59 research outputs found

    Living City, A Collaborative Browser-Based Massively Multiplayer Online Game

    Get PDF
    This work presents the design and implementation of our Browser-based Massively Multiplayer Online Game, Living City, a simulation game fully developed at the University of Messina. Living City is a persistent and real-time digital world, running in the Web browser environment and accessible from users without any client-side installation. Today Massively Multiplayer Online Games attract the attention of Computer Scientists both for their architectural peculiarity and the close interconnection with the social network phenomenon. We will cover these two aspects paying particular attention to some aspects of the project: game balancing (e.g. algorithms behind time and money balancing); business logic (e.g., handling concurrency, cheating avoidance and availability) and, finally, social and psychological aspects involved in the collaboration of players, analyzing their activities and interconnections

    A Framework for Designing 3d Virtual Environments

    Get PDF
    The process of design and development of virtual environments can be supported by tools and frameworks, to save time in technical aspects and focusing on the content. In this paper we present an academic framework which provides several levels of abstraction to ease this work. It includes state-of-the-art components we devised or integrated adopting open-source solutions in order to face specific problems. Its architecture is modular and customizable, the code is open-source.\u

    Analyzing the Facebook Friendship Graph

    Get PDF
    Online Social Networks (OSN) during last years acquired a\ud huge and increasing popularity as one of the most important emerging Web phenomena, deeply modifying the behavior of users and contributing to build a solid substrate of connections and relationships among people using the Web. In this preliminary work paper, our purpose is to analyze Facebook, considering a signi�cant sample of data re\ud ecting relationships among subscribed users. Our goal is to extract, from this platform, relevant information about the distribution of these relations and exploit tools and algorithms provided by the Social Network Analysis (SNA) to discover and, possibly, understand underlying similarities\ud between the developing of OSN and real-life social networks

    Improving Recommendation Quality by Merging Collaborative Filtering and Social Relationships

    Get PDF
    Matrix Factorization techniques have been successfully applied to raise the quality of suggestions generated\ud by Collaborative Filtering Systems (CFSs). Traditional CFSs\ud based on Matrix Factorization operate on the ratings provided\ud by users and have been recently extended to incorporate\ud demographic aspects such as age and gender. In this paper we\ud propose to merge CF techniques based on Matrix Factorization\ud and information regarding social friendships in order to\ud provide users with more accurate suggestions and rankings\ud on items of their interest. The proposed approach has been\ud evaluated on a real-life online social network; the experimental\ud results show an improvement against existing CF approaches.\ud A detailed comparison with related literature is also presen

    Enhancing community detection using a network weighting strategy

    Full text link
    A community within a network is a group of vertices densely connected to each other but less connected to the vertices outside. The problem of detecting communities in large networks plays a key role in a wide range of research areas, e.g. Computer Science, Biology and Sociology. Most of the existing algorithms to find communities count on the topological features of the network and often do not scale well on large, real-life instances. In this article we propose a strategy to enhance existing community detection algorithms by adding a pre-processing step in which edges are weighted according to their centrality w.r.t. the network topology. In our approach, the centrality of an edge reflects its contribute to making arbitrary graph tranversals, i.e., spreading messages over the network, as short as possible. Our strategy is able to effectively complements information about network topology and it can be used as an additional tool to enhance community detection. The computation of edge centralities is carried out by performing multiple random walks of bounded length on the network. Our method makes the computation of edge centralities feasible also on large-scale networks. It has been tested in conjunction with three state-of-the-art community detection algorithms, namely the Louvain method, COPRA and OSLOM. Experimental results show that our method raises the accuracy of existing algorithms both on synthetic and real-life datasets.Comment: 28 pages, 2 figure

    On Facebook, most ties are weak

    Full text link
    Pervasive socio-technical networks bring new conceptual and technological challenges to developers and users alike. A central research theme is evaluation of the intensity of relations linking users and how they facilitate communication and the spread of information. These aspects of human relationships have been studied extensively in the social sciences under the framework of the "strength of weak ties" theory proposed by Mark Granovetter.13 Some research has considered whether that theory can be extended to online social networks like Facebook, suggesting interaction data can be used to predict the strength of ties. The approaches being used require handling user-generated data that is often not publicly available due to privacy concerns. Here, we propose an alternative definition of weak and strong ties that requires knowledge of only the topology of the social network (such as who is a friend of whom on Facebook), relying on the fact that online social networks, or OSNs, tend to fragment into communities. We thus suggest classifying as weak ties those edges linking individuals belonging to different communities and strong ties as those connecting users in the same community. We tested this definition on a large network representing part of the Facebook social graph and studied how weak and strong ties affect the information-diffusion process. Our findings suggest individuals in OSNs self-organize to create well-connected communities, while weak ties yield cohesion and optimize the coverage of information spread.Comment: Accepted version of the manuscript before ACM editorial work. Check http://cacm.acm.org/magazines/2014/11/179820-on-facebook-most-ties-are-weak/ for the final versio
    • …
    corecore